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EFFECTS OF SHIELDING ON THE COULOMB T MATRIX 

by W i l l i a m  F. Ford 

Lewis Research Center  

SUMMARY 

The Coulomb T matrix is defined as the limiting value of the T matrix for a 
screened Coulomb potential when the screening is slowly turned off. Study of this limit- 
ing process is facilitated by an expansion in spherical harmonics, and the 1 = 0 te rm is 
treated in detail. The amplitude of the T matrix changes rapidly as a function of energy 
in the vicinity of certain critical points. 
regions requires that screening be taken into account, and the appropriate formulas a r e  
derived. An expression for the T matrix previously derived by Hostler is shown to be 
correct except in the critical regions. 

The precise value of the T matrix in these 

I NTRO D U CTIO N 

A quantity of considerable interest in the formal theory of scattering is the opera- 
tor T, defined symbolically by 

V 1 
E + k  - K - V  

T = V + V  

Here K is the Hamiltonian for the system in the absence of interaction, and V is the 
interaction giving r i s e  to the scattering. The total energy of the system is denoted by E; 
the small  imaginary te rm k ,  E - O+, serves  to make the Green's function 

1 
E + k  - K - V  

G =  

well defined. 
Generally it is convenient to think of the operator T as a matrix in the momentum 



'-c 

representation with matrix elements denoted by ( k2 I T ICl) . It is also useful to introduce 
a complex wave number k, which is related to the total energy by 

I 

where m is the reduced mass; thus the energy dependence of the T matrix may be indi- 
cated explicitly by writing ( c2 I T(k) I cl) , or simply T(k). 

For most quantum mechanical systems, an expression for the T matrix in closed 
form cannot be found. The case of a two-particle system with pure Coulomb interaction 
has been studied extensively, however, and recently Hostler (refs. 1 and 2) has been able 
to derive an integral representation for the Coulomb Green's function that can be written 
in te rms  of hypergeometric functions. From these it is relatively straightforward to ob- 
tain the Coulomb T matrix. 

The resulting expression for T(k), however, has the drawback that it does not ap- 
proach a well-defined limit as k -c f 1 kl  I or k -c f I c2 I and indeed has branch points 
there. This behavior is certainly not correct, for one can show on very general grounds 
that the only singularities of T(k) should be a branch point at k = 0 and simple poles on 
the imaginary k-axis corresponding to the bound state energies of K + V. 

The correct form of the T matrix when k = f I cl I is given in reference 3, where a 
similar anomaly in the limiting process I k2 1 -. I kl  I was studied. The difficulty there 
was traced back to the long-range nature of the Coulomb force and disappeared when the 
effects of shielding were included. 

In the present situation the nonphysical branch points a r e  also due to neglect of 
shielding effects. In all cases  of physical interest, the scattering of charged particles is 
caused by an interaction which is screened at very large distances. The T matrix may 
therefore properly be regarded as depending on two parameters, E and the screening 
radius R. When the value of T(k) for real k is desired, the correct order of limiting 
processes is E - 0 followed by R -c a. Usually, the ordering is unimportant, but the 
branch points mentioned occur because in Hostler's expression the limit R - 00 has been 
(implicitly) taken first. 

The purpose of the present work is to clarify the situation, first, by showing that the 
correct form of T(k) is obtained as k -c f I cl I and the branch points disappear if the ef- 
fects of shielding a r e  taken into account; and, second, by showing that the order of lim- 
iting processes is unimportant except in the vicinity of k = * I kl 1 and k = f I k2 I or  when 
Izl I = IC2 I .  (The last case requires rather special treatment and will not be considered 
here; in what follows it is assumed that I kl I # I k2 I. ) 

.* 

4 -.c 

1 -  I -c 

- -c 
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UNSCREENED COULOMB T MATRIX 

In this section an expression for the unscreened Coulomb T matrix which is essen- 
His result for the Green's function for a pure tially due to Hostler will be presented. 

Coulomb potential V(r) = Vo/r is 

(4) + 6(k2 - kl) mvo 1 c M  c- €I2 
- ( Q G l k l )  = 
2m k2 - k: n2€12 (k2 - k"1>(k2 - ki)(c2 - 

where 

2 (k2 - kt)(k2 - k i )  
p = 1 +  

k2(z2 - kl) - 2  

q = -  mvO 

ii2k 

From equation (4), the T matrix may be obtained as follows. The operator relation 

G=-- ' T  1 l +  
E + i e - K  E + % - K  E + L - K  

becomes, in the momentum representation, 

If this equation is solved algebraically for the T matrix and equation (4) is used, 
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The integral M may be evaluated in te rms  of the hypergeometric function 2F1 by 
changing to 

s - 1  
s + l  

x=- 

as the variable of integration, with the result  

P +  1 

Considered as a function of k, the right side of equation (11) has simple poles at 
iq = -n (n = 1,2,3.  . .) and branch points at p = 1 and p = a. These latter points 
correspond to k = f I kl I ,  k = f I k I ,  k = 0, and k = 00. The detailed behavior of T(k) as 
k -c f ICl I may be determined by analytic continuation of the hypergeometric ser ies  and is 
given by 

2 2 - -c 

2 

where 

- 77 < arg(ki  - k2) < 0 

a < arg(k; - k2) < 277 

(The corresponding result for k -c f 

matrix with respect to kl and k2. ) 
of reference 3: 

+ -c 

+ 
k2 I is readily obtained from the symmetry of the T 
This result is to be contrasted with the exact result 

4 



2 Equations (12) and (13) agree in the i r  dependence on k2 and (g2 - gl)2, but they differ in 
magnitude and phase (Co and 6o a r e  defined in the next section). In fact, the quantity 
in braces does not approach a well-defined limit as k - f 1 kl I, and its magnitude may 
vary by as much as a factor of eTV. For a precise definition of the T matrix in this 
energy region, the effects of screening must be considered. 

SCREENED COULOMB T MATRIX 

Ideally, one would like to find the T matrix for  some screened Coulomb potential 
and study its behavior as R - a. Then, as discussed in the INTRODUCTION, the Coul- 
omb T matrix could meaningfully be defined as 

or by a suitable limiting procedure when this limit does not exist. In principle, such a 
program could be carried out by means of an expansion in spherical harmonics, although 
it is highly doubtful that the ser ies  for T(R) could be summed in closed form. One may 
conjecture, however, that the ser ies  for 
Hostler's expression except when k - * ICl 1 or  k - f IC2 I .  Some support for this belief 
may be found in the fact that equation (12) has the right angular dependence with only its 
magnitude and phase in doubt. 

expansion of T(R) and comparing it to the general t e rm in the expansion of Hostler's re- 
sult. Here a less  ambitious program will be followed, that of comparing only the Q = 0 
terms. A qualitative investigation of the te rms  for I > 0, however, will also be made. 

is summable and in fact is given by 

To establish the conjecture rigorously requires examining the general t e rm in the 

Expansion in Spherical Harmonics 

In order to parallel the treatment of reference 3, delta-function normalization for the 
wave functions will be adopted, and the expansion of the T matrix will be written in the 
form 

47Pm Q=O 
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where 

and PQ(p) is a Legendre polynomial of order I. 

tions (1) and (15) if the corresponding Greenfs function is known. 
by making an expansion of the coordinate representation of the Green's function: 

The coefficients TQ(k) for an arbitrary potential V(r) may be obtained from equa- 
This is accomplished 

Afte 

( k2 

I1 Q=O 

I the angular integrations are carr ied out, 

-lm r2 d r i *  rr2 dr f  jp(k2r)W(r)( r I GQ I r t )  W(rr)jQ(klrr) (17) 

2 where W(r) = (2m/li )V(r) and jp(kr) is a spherical Bessel function of order 8 .  
To obtain ( r I GQ I rf ) , the operator equation 

( E + k - K - V ) G = l  

is written in the coordinate representation, from which it follows that 

6(r - rf) -I('+ ') -W(r)  ( r l G Q l r f )  = 
2 r 2 1 r 

The solution to this equation is well known to be 

6 



where r< is the smaller and r> the larger of r,rr, and where Fa and Ha are the 
regular and irregular solutions of 

having the asymptotic forms 

Fg(r) - sin r - - v f +  ) 

Hg(r) - -ie 

The phase shift 6g is determined by the fact that Fg(r) must vanish at r = 0, and the 
normalization is so chosen that the Wronskian of Fg and Ha is equal to  ik. 

By combining equations (17) and (20), one may write 

(k2lTglk1)  = -1g - Jg 

where 

and where 

Jg = Jg(12) + Jg(21) 

03 

jp(k2r)W(r)Fg(r) jg(klrt)W(rt)Hg(rt)rt d r t  r dr  (25) 

and Jg(21) is identical to Jm( 12) except that kl and k2 a r e  interchanged. 

7 



Cutoff Coulomb Wave Functions 

The simplest way to  screen the Coulomb field is to cut it off at r = R, so that the 
potential is 

The solutions of equation (21) here must be proportional to pure Coulomb functions for 
r < R and to  free-particle functions for r > R. 
chosen that the asymptotic forms of equation (22) a r e  obtained for large r. Thus, 

The free-particle functions a r e  so  

- _  - Ni(2kr)'eikrQ(1 + 1 + iq, 28 + 2; -2ikr) 
kr 

where 
spherical Hankel functions of the first and second kind of order I. 

The constants Na and 6g may be determined by equating logarithmic derivatives of 
F at  r = R; approximate values for large R a r e  (ref. 3) 

and Q a r e  confluent hypergeometric functions (ref. 4), and h?) and hf) a r e  

Q 

where 

8 



2iaP - r(Q + 1 + iq) 
r(P + 1 - iq) 

- e 

An exact value for the product NaNi  will be necessary and can he obtained from the 
fact that the Wronskian of FP and Ha must be equal to ik. After some algebra, one 
finds that 

kNPN;r(2P + 2) 

2 i r (Q + 1 + iq) 
FeHi - FiHP = (-1) = ik 

which yields 

1 - m+iu ,, ' e  
cp N N' = 2(-1) P+1 r(P + 1 + iq) - - 2(-1)Q+1e2 

r(2Q + 2) P P  

Finally, from the integral representations of CD and Q, the following expressions 
(valid for r < R) can be derived: 

The t-contour is a loop encircling the points t = f1 in the positive sense; the phases a r e  
such that arg(t f 1) = 0 when t crosses  the real  axis to the right of t = 1. The 
s-contour is a rtlooprr which begins at s = 03, encircles the point s = 1 in the positive 
sense, and returns to s = m; the phases a r e  such that initially arg(s f 1) = 0. 

Evaluation of To(k) 

For the cutoff Coulomb potential, the integral Io becomes 

9 



Io = /" sin k2r sin k r - dr 
klk2 0 ' r  

k1 + k2 + Ci[lkl  - k2 1.1 - CiFkl + k2)R] 
Ikl - % I  (35) 

where Ci(x) is the cosine integral (ref. 3, p. 267). Since the case kl = k2 is not being 
considered here, 

To evaluate Jo, it is convenient to  express sin(k2r) and sin(klrr) in te rms  of ex- 
ponentials and to introduce the integral representations (33) and (34). Then Jo can be 
written as the sum of four integrals of the type 

where B = B(12) + B(21) and 

ir ?( ks -kl) 
d r?  dr 

- ir( kt+k2) 
B( 12) = - 

k3N N' Vk3 Q =  O O eaqr ( l  - iq) = - - (1 - e 
3 4ai 16a i 

Specifically, 

1 
Jo =- [A(kl,k2) - A(kl,-k2) - A(-kl, k2) + A(-kl,-k 

k lk2  

(39) 

The integral for B( 12) is easily carried out and finally leads to  

10 



where 

s-plane 

-1 

t 

Figure 1. - Integration contours for confluent hypergeometric functions. 

kl a = k s -  

p = kt + k2 I 
and a! and 3 are the corresponding quantities with kl and k2 interchanged. Since B 
has no singularities for finite s and t, the contours may be deformed as desired; de- 
forming them as shown in figure l is convenient because then the singularities of the in- 
dividual te rms  in B do not c ross  the contours as Im(k) - 0. 

The roles of the four te rms  in B are as follows. Generally the main contribution is 
from the first term, the others being of order 1/R. When k - kl, however, the second 
t e r m  cancels part of the first and makes a contribution of its own. A similar remark 
holds for the third t e rm when k - k2. It may be shown (see appendix) that the fourth 
t e rm is always negligible provided that kl # k2; this te rm will not be considered further. 
Thus in an obvious notation 

(3 A = A 1 + A 2 + A 3 +  @ 

and, correspondingly , 

I t t  t t t  
Jo = Jo + Jo + Jo 

(43) 

(44) 

The t-integration for A1 is performed by expanding the contour into a circle of in- 
finite radius, which yields 
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where v = (kl + k2)/k. Then A1 can be written in the form 

Actually the integral is convergent even when L = 03, but the limiting process allows A1 
to be considered as the difference of two otherwise divergent integrals, which may thus 
be treated separately. In the first of these integrals, let 

X =  (L + 1)(L - v - l)(s - l)(s 1) 
(L - 1)(L - v + l)(s + l)(s - v - 1) 

and in the second let 

(L + l)(s - 1) 
(L - l)(s + 1) 

Y =  

Then, after some manipulation, A1 may be written 

r 

A I = -  2niQ lim aiq auv ) dx 
1 - ax 1 - auvx k2 

where 

(L - 1)(L - v + 1) 
(L + 1)(L - v - 1) 

a =  

1 2  



I 

kl + k 
u=-  

kl - k 

k2 + k 
v=- 

k2 - k 

The integrals in equation (47) a r e  all of the same general type, being integral represen- 
tations of a function here denoted by D(x): 

- - -- x 2F1(1,1 f iq;  2 + iq; x) 
1 + iq 

Therefore 

A - - 1 qk pm {aiq [D(a) - D(auv)] - biq [2D(b) - D(bu) - D(bvj]} 
- 0 3  l - 2  

From the analytic continuation of the hypergeometric function, 

where +(x) is the logarithmic derivative of the gamma function. The limit L - 00 may 
be taken with the help of equation (52a), and after the combination of equation (40) is per- 
formed 

(53) 

13 



Note that the first t e rm in Jb, which a r i ses  from the limiting value of D(a) - 2D(b), is 
just equal to -Io. 

approach either zero o r  infinity. 
When k -. kl, the expression for Jb simplifies because the arguments of D 

From equations (50) and (52b) it follows that 

with the phases of both l/uv and v/u between 0 and 2a. 
The t-integration for A2 is carr ied out as for A1 and leads to 

2TiQ [ 1----- f 2  - 'T]f(kl) 
A2=2 k k2 + k 

where 

f(kl) = e -ik1R['+) (s - l fq  ,ikRs ds  

s + 1 s - kl/k 

The expression for JC then takes the form 

(55) 

From the way in which the t contour is laid, one can show that both arg( l/v) and 
arg(v) must be approximately between -3r/2 and ~ / 2 .  

The integral in equation (56) is generally of order  1/R, as may be demonstrated by 
integrating by parts. This argument fails, however, when k -. kl, because the contour 
must pass between the singularities at s = 1 and s = kl/k, and these singularities 
merge in the limit. The difficulty may be avoided by first enlarging the contour so that 
it also encloses the pole at s = kl/k: 

14 



The contour I? is now such that, for sufficiently small  Ik - kl I, the factor (s - kl/k)-l 
may be expanded about s = 1 and term-by-term integration performed. The resulting 
integrals may be recognized as confluent hypergeometric functions, and to lowest order 

+(ill, 1; -2ikR) + 8 [(k - kl)R] 1 f(kl) = -2ni[:y - e-'IT"I 

r(1 - iq) 
(59) 

From the derivation it is clear that 0 < arg( l/u) < 2n, and since kl is positive, this 
becomes 'IT - < arg(l/u) - < 27. 
write 

- - 
For large R, the asymptotic form of 9 may be used to 

Two things are noteworthy here. First, there is the appearance of the logarithmic 
phase factor (2kR)-lq, known to be necessary when k - 1 kl 1 from the work of refer- 
ence 3. Second, the order of magnitude estimates of the neglected te rms  in equation (60) 
show clearly that this result can be achieved only if the order  of limits is k - kl fol- 
lowed by R -c 00. 

may be expressed as 
Through use of the definitions of C0($ and 60, the final result  for J; when k - kl 

A similar treatment may be made when k -. -kl; for  all other values of k, Jf = 8( l/R). 
Finally, examination of the third te rm in B (eq. (41)) shows that J;* is identical to Jf 

except that kl and k2 are interchanged. 
complete, and To(k) may be determined. 

Thus the evaluation of Jo to order 1/R is 

In the general case, where only Jb is nonvanishing for large R, 

T Ik ) = * [.($) - D(:) - D(:) + D(uvj  
2klk2 

(k21 0 1 

in the limit R - 00. This equation corresponds exactly to  Hostler's result, as will be 
shown in a later section. In particular, there are branch points at k = *kl and k = *k2. 
Clearly, however, these branch points do not appear if the limit R -. 00 is taken last. 

15 



Consider the case k + kl; here both J b  and Jrr are important, and when equations 
(54) and (61) are combined 

0 

The limiting value of To is independent of the way in which k - kl and, in view of the 
restrictions on arg( l/v) and arg(v), may be written 

This is identical to the result found in reference 3. 

PROPERTIES OF TQ(k) 

Although no detailed investigation of TI has been made for higher values of I, 
reasonable predictions about what to expect are not difficult to make. For higher Q val- 
ues in the shielded case, jp(klrr) and jp(k2r) would be written in te rms  of spherical 
Hankel functions; this would again lead naturally to four JQ integrals, of which only the 
first would be independent of R. 
cept in the vicinity of the branch points, as in the Q = 0 case. It is not unreasonable, 
then, to suppose that the R-independent t e r m  is the same one that would be obtained for 
the unscreened potential, and therefore that the screened and unscreened T matrices 
are identical in the limit R + m save for the exceptional points. 

Presumably the other three would be of order 1/R ex- 

To strengthen this argument, consider the integral 

ikJQ(12) = lR wl(r )  lR w2(rr )  d r r  d r  

which arises in the calculation of TQ. Here 

16 



I 

and because r and rr are always less than R, Fp and H 
Now the integral in equation (65) may be rewritten 

are pure Coulomb functions. Q 

provided that w1 and w2 are given some suitable definition for r > R. For the present 
purpose, it is convenient to  require that w1 and w2 have the same functional form for 
r > R as for r < R, that is, w1 and w2 are proportional to  pure Coulomb functions 
multiplied by spherical Bessel functions for I all r. 

With this definition, i t  is clear that the first t e rm in equation (67) is just what one 
would write for the unscreened Coulomb potential. The second t e rm is similar to  J; 
of the preceding section in that it factors into a function of k2 multiplied by a function of 

kl.  

- 

Regarding the second factor, one can show that 

This follows from the fact that for large values of r, 

sin (1 k r - - '3 eikr 
w2(r) - VkNli Q+ l+iv 

klr ( 2kr) iq 

The rapid oscillations of the exponentials make the integral small  unless k -. *kl. In 
like manner, by using the asymptotic forms of w 
that the third integral in equation (67) is of order  1/R unless both k -. *kl and k -c &k2, 
which is possible only if I kl I = I k2 1 .  

tributions to  the integral from large r are important, and these contributions occur only 

and w2, one may show (see appendix) 1 

These findings reveal that Jn( 12) departs from its unscreened value only when con- 
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when k -c &kl. Similar conclusions may be drawn for JQ(21), the critical condition be- 
coming k -rtk2. Thus, 

J(R)= ( m ) +  .[ ] + e[ ] 
(k2 - ki)R 

Q JQ 
(k2 - k:)R 

To complete the investigation of TQ, the behavior of IQ as R -c co must be deter- 
mined. The subtraction procedure used above is also effective here, and leads easily to 

(71) 

From this and equation (70), it follows that 

T(R) = T(..) + @[( ] + @[ ] + fl[( k l - k  2) R ] k *  kl)R (k * k2) 

which is the desired result. 

large r come into play. Consider the case k 
It is instructive to examine the way in which TQ changes as the contributions from 

kl; from equation (69) and the fact that 

N i  2(-1) Q+ 1, ?rq/ 22'Q 

and 

GQ - - q ln(2kR) 

-i(kl-k)r dr 

l+iq r 
(73) 

This integral may be evaluated from the formula 
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The lower form of equation (74) is appropriate to the present case, which corresponds to 
R -. 00, XR -. 0. Because of the restriction on arg(X), 

Then, since +(x) - 1 as x -c 0, 

It will now be shown that 

-iSQ 
wl(r)dr = -ke ( k2 I TQ(k) I k )  (77) 

that is, the integral is proportional to TQ(k) for the special case when kl is complex 
and equal to k. For the proof, it is necessary to consider a rrplane waverr cp- whose 
wave number is complex: k 

- _  3 m 3 

I -c 

+(r) = ( 2 4  iQ(2Q + l)PQ(k r)jQ(kr) 
Q=O k 

2 2  

2m 
-- - E + k  

19 



When the scattering operator T(k) is applied to this function, the result  may be ex- 
pressed as 

4 

where 

+Jr) = (1 + GV)+ 
k k 

1 

Thus the T matrix may be written 

The reason for introducing cp- becomes clear when one looks for a way to deter- 
k 

mine ++. Since cp- is annihilated by the operator E + i e  - K, it follows from equa- 
k k 

tion (80) that 

(E + ic - K - V)+- = O  
k 

Thus ++ is an eigenfunction of K + V belonging to the complex energy E + ic, and 

well-known scattering theory techniques lead to the expansion 
k 

The angular integration in equation (81) may now be carried out and yields 

When this equation is compared with equation (14) with the cutoff Coulomb potential for 
V(r), the result given in equation (77) is obtained. 

20 



One final point remains to be made. In equation (77) the upper limit cannot be ex- 
tended to  infinity for arbitrary complex k, because the integral will diverge. It can be 
shown, however, that 

where gg(k2, kl) is a finite, well-behaved function provided that kl # k2. Combining all 
these results yields 

i tig 
The first t e rm on the right side is R-dependent through the phase factor e , and 

provides the correct definition of Tp as k - kl. The second te rm is independent of R 
and has a branch point at k = kl; clearly its function is to cancel a similar quantity from 
Jf). This can be seen quite easily in the I = 0 case, since Jkw) = Jb of the preceding 
section. Hence, 

From equations (85), (77), and (63), it follows that 

and thus, using equation (54) for J b  gives 

The preceding discussion indicates that Jim) may be written as -Iiw) plus a te rm to 
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be cancelled by contributions from large r. Examination of equation (76) reveals that 
this cancellation is equivalent to replacing 

i G P  
ie 

as a factor in the t e r m  to be cancelled. Since 

6P = Go + (UP - Uo) 

the P dependence of JP) is not affected by this replacement, and 

The importance , .  of this result  is that the angular dependence of T(R) will be the same as 
that of T'OO) in the limit k - kl, 

2n' 

and thus from equation (12), 

as (k - kl)R -c 0 (91) 

This result agrees with the findings of reference 3 and in the limit yields equation (13). 

CLOSED FORM FOR T("O)(k) 

In the foregoing section, it was more or  less  tacitly assumed that T(OO)(k) is given 
by Hostler's formula provided that k is off the real axis. A study of Hostler's deriva- 
tion indicates that this is true,  since he begins with the same Green's function integrals 
except that the upper limit is 00 instead of R. One can also verify directly that 
( k2 1 To 1 k l )  is the same for both by evaluating 

22 



An expression for 1 + M is given in equation ( l l ) ,  but a more convenient one for integra- 
tion purposes is 

which may be obtained from equation (11) by making use of the transformation properties 
of the hypergeometric function. Then, since 

2 dp = -  klk2 p - 1 

and 

where D(x) is defined in equation (50). the integration yields 

(94) 

This equation is identical to equation (62), which gives the result for ( k2 1 To I kl) in the 
shielded case when only the R-independent te rms  are included, that is, the result for 
( k2 I TLm) I k 1) . Although it is beyond the scope of this report to examine in detail the 
exact form of Ti") for Q >0, the evidence presented here leaves little reason to doubt 
the equivalence of T(m) and Hostler's formula. 
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11111 I11111111111 II l1l11111l1lll11111111l1 II I I I  II I 1  Ill1 Ill Ill II 

CONCLUDING REMARKS 

The Coulomb T matrix T(k) is obtained from the T matrix T(R)(k) for a screened 
Coulomb potential by the prescription 

Generally, it makes no difference whether k approaches the real axis before or  after 
the limit R - m is taken, and in this general case 

where M is give2 by Hostler'sintegral (5). 

a r e  incorrect. 
the limit R - 00. The result for k - f I k l l  is 

When k = f I kl I or  k - k2 I , however, the magnitude and phase of this equation 
Here it is important that k be allowed to approach the real  axis before 

+ 

- -c -c 

The symmetry of ( k2 I T I kl ) may be invoked to obtain the result for k - f I k2 I. 
The Coulomb T matrix is seen to  be independent of screening effects except when - - -c 

k - kl  I o r  k - f I k I ; at these points it depends directly on R only through the loga- 
i6, 

rithmic phase factor e ". The magnitude of the T matrix becomes discontinuous in 
the limit of zero screening: for example, if  k is on the real axis in the vicinity of k 1' 
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where 

z 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 5, 1965. 
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APPENDIX - ORDER OF MAGNITUDE ESTIMATE 

In the investigation of Ja( 12), the quantity 

was neglected on the grounds that it could be shown to  be of order 1/R unless both 
2 2 2  k2 + kl and k + k2. Essentially the same integral was neglected in the detailed study 

of Jo for the same reason. In this appendix, a rigorous estimate of the magnitude 
of 9 will be given. 

be written as the sum of eight integrals all of the general form 
If R is large enough, asymptotic forms may be used for w1 and 02, and .q can 

The various values of A and p will be *ik2 f ik and *ikl - ik, respectively, and thus 
they satisfy the conditions 

It is convenient to write P in the form 

where 
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Equation (A4) may be used to show that 

is bounded as r - 03 if P is fixed; and equation (A5) may be used to show that g(r) is 
bounded for  all r > R even if p - 0. Thus, if  p is fixed, - 

(Note that this result  is independent of the value of X.) If 1-1 - 0, however, it is neces- 
sa ry  to integrate equation (Al) once by parts and write 

Now, since g(r) is bounded even for p -c 0, the integral is of order  1/R and 

P =  CY(-) as r+03 /.LR - 0 
Equations (A7) and (A9) together show that P is of order 1/R unless both X and p 

approach zero. 
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